
NASA/CR- 1999-209346

ICASE Report No. 99-21

On Higher Order Dynamics in Lattice-based Models

Using Chapman-Enskog Method

Yue-Hong Qian

Columbia University, New York, New York

Ye Zhou

IBM, Yorktown Heights, New York

and

ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

June 1999

Prepared for Langley Research Center
under Contract NAS 1-97046



Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650



ON HIGHER ORDERDYNAMICS IN LATTICE-BASED MODELS USING

CHAPMAN-ENSKOG METHOD

YUE-H()NG QIAN* AND YE ZHOU t

Abstract. In this paper, we investigate the existence of higher order dynamics in lattice-based models.

We have identified two conditions that determine whether a model would allow some Burnett-like equations

when the Chapman-Enskog expansion is used. These two conditions are the number of the conserved

quantities as well as the space and time discretization. We shall demonstrate these conditions by discussing

(1) pure diffusion equation, and (2) hydrodynamic equations. While the fact that diffusion equation allows

the higher order dynamics can be shown easily, we will illustrate that care must be taken when deriving

Burnett-like equations for lattice-based hydrodynamics models using the Chapman-Enskog method.
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1. Introduction. Compared to traditional methods in computational fluid dynamics (CFD), the lattice-

based models arc simple and easy to implement on computers. The advantages and disadvantages of the

original lattice gas automata (LGA) have been well documented [1-7]. The lattice Boltzmann equation

(LBE) was later introduced to remove some of the drawbacks [8-10]. A further simplification to the LBE is

achieved using the BGK procedure (LBGK) [11-14].

In lattice-based models, it is well established that the Navier-Stokes equation can be deduced at low order

expansion of Chapman-Enskog expansion [15]. Many authors further asserted that the Burnett-like equation

could bc obtained by performing higher order using Chapman-Enskog expansion [4,6,7]. The motivation of

this paper is to carry out these higher order Chapman-Enskog expansion to investigate whether it is consistent

to do so. Wc will first study the lattice-based modcl for pure diffusion model [16,17]; and demonstrate that

higher order dynamics is allowed in this case. We will then point out that the Burnett-likc equations could

I)c derived for lattice-based hydrodynamics models. Attention should be paid, however, when the classic

Chapman-Enskog expansion is applied because of the non-commutative feature of cross derivatives of two

time scales, thesc derivatives do not exist in the continuous time and space while do exist in discrete velocity

models [18[. The number of conserved quantities is also critical for the existence of higher order equations.

2. High Order Dynamics: Pure Diffusion. Wc now consider the lattice BGK models for pure

diffusion problems where the only quantity conserved during the redistribution is the total mass. The

propagation step is the same as lattice gas models while the collision step is just a redistribution of mass in

all possible directions. Wc start with the following evolution equation [12],

(2.1) + 1) = + t) - t))
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where f_ is the average population of particles with velocity _(i -- 1, 2, ..., B) which belongs to a predeter-

mined finite set and w the relaxation parameter which satisfies 0 < w < 2. The local equilibrium population

f/q(i, t) is chosen as [17],

1

(2.2) f;q(i,t) = =

B is the number of particles' discrete velocities. This is a homogeneous equilibrium population in all velocity

directions. The macroscopic density, denoted by p, is defined by:

B B

(2.3) = = flq( ,t)
i=1 i=1

The weighting factor wi satisfies the normalization constraint: y_,B wi = 1. The choice (2.2) for the equilib-

rium population, when used together with (2.1) and (2.3), will be shown to lead to the diffusion equation.

Wc consider models with the particle velocity set in D dimension (D = 1, 2 and 3). The simplest models

take the velocity set of 2D elements: D directions along axis and D opposite directions. The rest particles

can also be included.

We assume a weak deviation from the local equilibrium f_q(i, t),

(2.4) f,(_,t) = f:q(_,t) 4-,f(1)(_, t)4- e2f(2)(£,t) +'"

where e is the appropriate Knudsen number. The space and time derivatives arc expressed in terms of

multiple-scale variables up to the fourth order in time (see, for example, Huang [19]),

(2.5) 0a = e0_

(2.6) Ot = ec3t1 + e20t2 + e3Ot3 + eaOq.

When the total mass is conserved, it follows from (2.1), (2.2), (2.3) and (2.4) that,

B

(2.7) E gJ) = 0, j > O.

i=l

Using the classic Chapman-Enskog expansion and taking into account of the discreteness of lattice model,

we obtain the first order equation in _,

(2.8) 6, P = O.

The second order equation is,

C 2

(2_ _ t)a._p = O.(2.9) c3t_P- 2-D w

The equations (2.8) and (2.9), i.e., the dynamical equations from the two separated time scales 1/_ and 1/e 2,

are now reconstituted to obtain the macro-dynamical equations for the model. The equation of diffusion

equation is obtained from (2.8) and (2.9)

(2.1o)

where the diffusivity _2 is given by

(2.11)

Oqt fl = t_ 2 0_a a fl

c2 2 _ 1).
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FIG. 2.1. The dispersion relation (up to fourth order) _ versus k for the D3Q6 model, The open triangles, solid

triangles, open squares, solid squares and open circles are numerical simulations corresponding to w = 0.75, 1.0, 1.25, 1.5 and

1.75, respectively. The critical value w_ is 1.0 for this model.

We can also obtain higher order equations by carrying the Chapman-Enskog expansion further. We

derive the third order equation,

(2.12) Ot3P = 0

and the fourth order equation,

(2.13) Ot,p = -AlOa,_p -- A2c_c_aap.

The coefficients A1, A2 and _2 in (2.10) for models including rest particles are obtained after some algebraic

calculations,

= c_( 2 -11
(2.14) _2 _-_

c 2 2 2 1

.... + _)_(2.15) AI _(w2 w

1

(2.16) A2 = c2(-_ + - - --

The final fourth order equation is thc following [17],

1 1

w 12 )n2'

(2.17) Otp = _20aap -- AIOaaZZp - A20_p.

We note that Equation 2.17 is anisotropic duc to the last term. Applying the Fourier transform exp(-_2t -

ikx) (k is the wavenumber and 12 the frequency) to the above equation in one-dimensional space, wc get the

dispersion relation which reads as,

(2.18) --_= 1 + _4k2,
1£2 t_2



where _4 = A1 + A2 and _ = _.

Numerical result is given by the Figure 2.1. The curves correspond to theoretical results n/_2 while the

points correspond to numerical simulations of the lattice model presented above. Satisfactory agreements in

all cases are achieved. The fourth order corrections may have effects in the regime of large Knudsen number,

i.e., large k and small w. Equation 2.18 is valid only for wavevector along x (or y, z) axis, so is the critical

value wcr = 1 for the D3Q6 numerical model [12] used for Equation 2.1.

3. High Order Dynamics: Hydrodynamics. We now turn our attention to lattice-based hydrody-

namics models. In the LGA, LBE, and LBGK models, both the mass and momentum are conserved. The

common features in these models are discrete velocity space of particles, evolution steps of local interac-

tions and neighbor-to-neighbor propagation of moving particles. Since the principle of deriving large-scale

equations is the same and outlined in the previous section. For the sake of simplicity, we use lattice BGK

models to illustrate the existence of high order dynamics: Burnett-like equations. In classic kinetic theory,

Euler, Navier-Stokes, Burnett and Super-Burnett equations constitute the successive approximations of the

Boltzmann equation in the order of Knudsen number. Like in classic kinetic theory, the lattice-based models

for hydrodynamics use the Chapman-Enskog expansion in order to derive the Navier-Stokes equations. We

outline the basic ingredients of the derivation. The time evolution equation is the same as section 2, except

that the equilibrium distribution f_q contains not only mass, but also momentum,

(3.1)
C./o_ Uo_

f_q = tpp(1 + _ +
- )

where cs is a constant. The density p and velocity ff are defined by,

(3.2)

B B B B

i=1 i=1 i=1 i=1

which leads to the constraints on high order corrections f[J),

B B

(3.3) Z f?) : 0, Z <s? ) = 0, j > 0
i=l i=l

The leading order on e yields the inviscid fluid equations,

o.p + = o

and the second order e2 results in the dissipative terms,

(3.6)

(3.7)

Ot2P = 0

O,2(pu_ ) = _,(O_(pu_) + 0,_(_,_))

where v is the shear viscosity (v = c_(1/w - 1/2)).

Now, in ordcr to obtain high order hydrodynamical equations of the lattice-based models, let us look at

the third order e3, the Taylor expansion gives the following equation,



1 0

1 (at,t, + 2ci_,a,l_, + c_,:,Gza,:,a)/_ O) + -_( ,ltlt,+ 3c_,otit,_, + 3ci,:,cizat,,:,_ + c_,cizc{.ya_,z.y)xeq

(3.8) =

Summing the underlined cross derivative Ot_t2f_ q in thc above equation over i, we get a term,

Using the first and second order Equations 3.4-3.7, we obtain two different results,

(1). if we first take the derivative over t2 then tl, we have,

(p) = 0.

(2). Reversely, we have,

(p) = + )

It means that the operators are not commutative,

¢ (.)

where • is either p or puc,.

Note that 1 the third order macroscopic equations can bc also obtained by the wavevector expansion (sec

for example, van Cocrvorden et al. [20]). Even though the above-mentioned operators are not commutative,

the essential point in the Equation 3.8 is the sum of the two terms. After a tedious algebraic calculation, we

get the third order equations,

(3.9)

(3.10)

2

= C;ao z(pu )
6

O_(pu_) = c_(12 12 + 1)O_z_(p).
6 w2 w

We check the dispersion relation up to the third order numerically in Figure 3.1 (the curves are theoretical

predictions with Equations 3.9 3.10 and points numerical simulations). Good agreement is obtained.

Even higher order (fourth and up) dynamics can be obtained while tremendous care has to be taken

since more non-commutative operators are involved and results will be published elsewhere.

4. Concluding Remarks. In this paper, we pointed out that two conditions determine whether the

lattice-based models could or could not have higher order dynamics when classical Chapman-Enskog ex-

pansion is used. These conditions are number of conservation laws and the space and time discretization.

The pure diffusion model, a system with only one conserved quantity, is first presented to illustrate that the

higher order dynamics is allowed. We thcn turned our attention to the lattice-based hydrodynamics equa-

tions. With more than one conserved quantities, wc note that special care must be taken to derive govcrning

equations for higher order dynamics. After noting the feature of no-commutative cross time derivative, wc

dcmonstratc how Burnett-like equations could be obtained for lattice-based hydrodynamics models using

the classic Chapman-Enskog expansion method. The results reported in this paper can be used to analyze

theoretically systems where hydrodynamic description may break down, a typical example is simulations of

the micro-electronic mechanical systems (MEMS) [21,22].

1The authors are very grateful to the referee of the Phys. Rev. E for this and several other important observations.
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FIc. 3.1. The dispersion relation (up to third order): The speed of sound versus k for the D1Q5 model, The open triangles,

solid triangles, open squares, solid squares and open circles arc numerical simulations corresponding to w = 0.75, 1.00, and

1.50 while the curves are theoretical predictions.

Acknowledgments. Our special thanks goes to Dr. S.Y. Chen of CNLS at Los Alamos National

Laboratory. Part of the work was accomplished during a visit of Qian's at the Hong Kong University of

Science and Technology.

REFERENCES

[1] U. FRISCH, B. HASSLACHER, AND V. POMEAU, Phys. Rev. Lett. 56 (1986), pp. 1505.

[2] U. FRISCH, D. D'HuMI_RES, B. HASSLACHER, P. LALLEMAND, Y. POMEAU, AND J.-P. RIVET,

Complex Systems 1 (1987), pp. 649.

[3] G.D. DOOLEN, EDITOR, Lattice Gas Methods for Partial Differential Equations, Addison-Wesley Pub-

lishing Company, 1989.

[4] R. BENZI, S. SvccI, AND M. VERGASSOLA, Phys. Reports 222, No. 3 (1992), pp. 145-197.

[5] Y.H. QIAN, S. SuccI, AND S.A. ORSZAG, Annual Review of Comp. Phys. Vol. III (1995), pp. 195-242.

[6] D. ROTHMAN AND S. ZALESKI, Lattice Gas Automata, Cambridge University Press, 1997.

I7] S.Y. CHEN AND G.D. DOOLEN, Annual Review of Fluid Mech. 30 (1998), pp. 329-364.

[8] G.R. MCNAMARA AND G. ZANETTI, Phys. Rev. Left. 61 (1988), p. 2332.

[9] F.J. HIGUERA AND J. JIMENEZ, Europhys. Left. 9, No. 7 (1989), pp. 663-668.

[10] Y.H. QIAN, Lattice Gas and Lattice Kinetic Theory Applied to the Navier-Stokes Equation, PhD thesis,

Ecole Normale Sup_rieurc and University of Paris 6, 1990.

[11] P. BHATNAGAR, E.P. GROSS, AND M.K. KROOK, Phys. Rev. 94 (1954), p. 511.



FormApproved
REPORT DOCUMENTATION PAGE OMB No 070_-01a8

Publicreportingburdenfor thiscollectionofinformationisestimatedto average1 hourperresponse,includingthetimefor reviewinginstructions,searchingexistingdatasources,
gatheringandmaintainingthedataneeded,andcompletingandreviewingthecollectionofinformation.Sendcommentsregardingthis burdenestimateoranyotheraspectofthis
collectionofinformation,includingsuKsestionsfor reducingthisburden,to WashingtonHeadquartersServices,DirectorateforInformationOperationsandReports,1215Jefferson
DavisHighway,Suite1204,Arlington,VA22202-4302,andtotheOfficeof ManagementandBudget,PaperworkReductionProject(0704-0188),Washington,DC20503

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE
June 1999

4. TITLE AND SUBTITLE

On Higher Order Dynamics in Lattice-based Models Using

Chapman-Enskog Method

6. AUTHOR(S)

Yue-Hong Qian
Ye Zhou

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 99-21

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-1999-209346
ICASE Report No. 99-21

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report
Submitted to Physical Review E.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 34
Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
In this paper, we investigate the existence of higher order dynamics in lattice-based models. We have identified
two conditions that determine whether a model would allow some Burnett-like equations when the Chapman-

Enskog expansion is used. These two conditions are the number of the conserved quantities as well as the space
and time discretization. We shall demonstrate these conditions by discussing (1) pure diffusion equation, and (2)

hydrodynamic equations. While the fact that diffusion equation allows the higher order dynamics can be shown

easily, wc will illustrate that care must be taken wimn deriving Burnett-like equations for lattice-based hydrodynamics

models using the Chapman-Enskog method.

14. SUBJECT TERMS
Boltzmann equation lattice-based hydrodynamics models, Navier-Stokes equation

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATIOI_
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

12

16. PRICE CODE
A03

20. LIMITATION
OF ABSTRACT

Standard Form 298(Rev. 2-8g}
Prescribed by ANSIStd Z39-18
298-102



[12] Y.H. QIAN, D. D'HUMIERES, AND P. LALLEMAND, Europhys. Lett. 17, No. 6 (1992), pp. 479-484.

[13] H.D. CHEN, S.V. CHEN, AND W. MATTHAEUS, Phys. Rev. A 45 (1992), p. R5339.

[14] Y.H. QIAN AND S.A. ORSZAG, Europhys. Left. 21, No. 3 (1993), p. 255-259.

[15] S. CHAPMAN AND T.G. COWLING, The Mathematical Theory of Nonuni]orm Gases. Cambridge Uni-

versity Press, 3rd edition, 1970.

[16] B. HASSLACHER, R. KAPRAL, AND A. LAWNICZAK, Chaos 3, No. 1 (1993), p. 7.

[17] Y.H. QIAN AND S.A. ORSZAG, J. Stat. Phys. Sl, No. 1/2 (1995).

[18] R. GATIGNOL, Thdorie Cindtique des Gaz _ rgpartition discrete de Vitesses, Volume 36 of Lectures

Notes in Physics, Springer-Verlag, 1975.

[19] K. HUANG, Statistical Mechanics, John Wiley, New York, Second Edition, 1987.

[20] D.V. VAN COEVORDEN, M.H. ERNST, R. BRITO, AND J.A. SOMERS, J. Stat. Phys. 74 (1994),

pp. 1085.

[21] J. HUANG, D.H. FENG, AND Y.H. QIAN, submitted to Phys. Fluids, 1998.

[22] X.B. NIE, G.D. DOOLEN, AND S.Y. CHEN_ submitted to Phys. Fluids, 1998.


